
High-Risk Serovar Prevalence in Sources of Listeria monocytogenes: 

A Clustering Analysis of Food-Borne Illness 

Nathan Provost and Antonella Basso 

Abstract 

Relevance: Listeria monocytogenes (hereafter listeria) is a dangerous species of bacteria that poses a direct 
t hreat to public health, and the association between severe strains of listeria and t heir sources of origin has 
not been studied with sufficient precision and attention to detail. 

Goals: We endeavor to create two clustering models for data pertaining to the sources, collection times, 
minimum self-same distances, and genetic information of various strains of listeria, so that we can assess the 
intensity of particularly problematic strains within clusters. We also aim to compare our new models to a 
pre-existing genetic cluster model included in the dataset in terms of similarity. 

Methods and Setting: We employ t raditional k-means clustering with optimal cluster selection using 
silhouette coefficients and network clustering with similarity weighting through the linkcomm package in R 
(Kalinka and Tomancak 2011). Data is assessed for t he t ime period between 2017 and late 2022, wit h each 
year divided into four quarters. Sources of isolation are grouped coarsely and missing data is not used in our 
analysis, which allows for 2290 unique strains of listeria to be analyzed. 

Outcomes of Interest: Serovar 4b prevalence by cluster, source prevalence by cluster, Rand index values, 
silhouette coefficient plots, community centrality, and community modularity are all outcomes of interest. 
Visualizations of cluster interactions and networks are also objects of interest. 

Results: A strong sense of similarity exists between our sample networks and the SNP model, while 
a moderate sense of similarity exist s between our k-means model and both our network model and the 
genetic model. Both genetic and non-genetic factors appear to influence serovar 4b prevalence, but specific 
recommendations cannot be made. Our methods provide framework for future research and reproductions. 

Conclusion: It is likely t hat severe strains of listeria manifest more frequently in specific isolation sources, 
but our analysis is to limited to provide any further guidance on this matter. Future studies should aim to 
atomize isolation sources into more precise groups in order to better understand the relationship between 
strain severity and source. However, our methodology has laid the groundwork for more intensive research. 

Introduction and Review of Literature 

Listeria monocytogenes is a particularly problematic species of bacteria t hat causes numerous cases of 
food-borne illness each year both in the United States and across the world. The most vulnerable populations 
to its effects consist of infants, pregnant women, the elderly, and the immunocompromised, who frequently 
experience the common symptoms of infection that include flu-like symptoms (nausea, vomiting, fever , etc.) 
as well more severe symptomatic manifestations. (Rogalla and Bomar 2022) While it is often characterized 
medically as a food-borne illness, being found frequently in cheeses, cold meats, and unprocessed/improperly 
processed diary products, it exists environmentally in the soil and decaying organic matter, but does not 
surface as a point of infection nearly as frequently as it does in food-processing areas such as farms or 
improperly cleaned production facilit ies. (Rogalla and Bomar 2022) (Ward et al. 2004) Furthermore, the 
severity of strains extracted from differing environment s, or more specifically, that have evolved to suit 
different environments, thus suggesting an increased presence, has been a subject of comparison and evaluation 
in recent literature (Ward et al. 2004), which is where the basis of our line of questioning lies. 

1 



It is essential to elaborate on the results of one recent article (Ward et al. 2004) that provides a rigorous 
overview of the differences in strains of listeria by serovars, small biological distinctions in the bacteria that 
separate one subgroup of the species from another. Developing robust methods of separating one strain of 
listeria from another is essential to providing comprehensive analysis of its pathology, since differences in 
serovars are often related to differing levels of disease manifestations in human beings as shown in this article. 
(Ward et al. 2004) Its results present a a phylogenetic tree with over 60 strains of listeria. These strains 
are grouped into three lineages (LI, LII, and LIII) which separate them by small genetic differences. These 
lineages are further organized by several different serovars, which distinguish the strains through ever more 
minute genetic and physiological differences. The sources from which each specimen was obtained is also 
provided, but the detail behind these sources is minimal, since each sources is listed as either human, animal, 
food, environmental, or missing. (Ward et al. 2004) While these source types provide some degree of clarity, 
the lack of specific details pertaining to these sources is unhelpful for further analysis of the relationship 
between sources and strains. 

An important first step in sorting the impact of listeria on humanity is examining the variance of severity 
among different strains. It has been shown (Muchaamba et al. 2021) that strains possessing serovar 4B have 
led to longer virus survivability in organisms (zebrafish were used), which is instrumentally tied to worse 
clinical symptoms overall. (Muchaamba et al. 2021) This kind of distinction is of great importance to the 
medical examination of listeria, since any implication of differing severity across strains could better inform 
our decisions when faced with the isolation of one strain versus another. A specific result from t his study 
showed that LI strains of listeria yielded an 85% mortality rate in the tested zebrafish population, whereas 
the LII strain only yielded a 17% mortality rate and the LIII strain only yielded a 2.5% mortality rate. These 
survival rates were fitted using a standard Kaplan-Meier estimation curve. (Muchaamba et al. 2021) From 
this report, it is clear that not all strains of listeria pose an equal threat to biotic organisms ( the study uses a 
population of zebrafish but suggests that the gravity of the results can be generalized to human populations), 
but further trends have yet to be identified in this study. Specifically, a crucial point of interest is whether or 
not different sources of listeria are associated with more or less aggressive strains. 

Studies have also focused exclusively on strains of listeria that have proven to be most severe compared to 
their counterparts. The study lists other subspecies of listeria that almost always do not cause human illness, 
but then proceeds to discuss the most potent strains of Listeria monocytogenes that were encountered. The 
26 strains arose in Bucharest, Romania and were all clinically isolated from a total of 24 patients who were 
presenting with conventional symptoms over the years 2009 to 2013. (Borcan et al. 2014) Three clinical 
origins were specified: blood cultures, placenta swabs, and cerebrospinal fluid. Over half (16 in total) of the 
samples came from cerebrospinal fluid, while only a single isolate came from a placenta swab. The most 
common serovars among these isolates for the hospitalized patients were 1/2a, 1/2b, 3a, and 3b, but serovar 
4b was also prominent among the selection of specimens. All of these serovars demonstrated resilience to 
traditional unifaceted antibiotic treatment, but there was no significant resilience shown against multidrug 
methods. Collectively, this study again demonstrates that the most severe strains of listeria present specific 
genetic characteristics that separate them from other strains, yet this approach is limited to solely clinical 
data, and does not offer insight into where these people could have encountered listeria. (Borcan et al. 2014) 

A more expansive approach to investigating the source-severity dynamic of listeria in the human population 
examines the movement of listeria through several different food products across eastern Europe during 
two distinct time periods (from 2001 to 2005 and 2019 to 2020). (Psareva et al. 2021) These strains were 
only of two distinct lineages ( either LI or LII) and they all came from food products broadly consisting 
of dairy, meat and poultry, and fish. Strains from the first outbreak period (from 2001 to 2005) were of 
greater serovar diversity and contained a larger proportion of the LI strains of listeria, which as previously 
mentioned (Muchaamba et al. 2021) have been associated with worse symptomatic manifestations overall. 
Furthermore, LI strains were shown to be associated with dairy products in greater proportion than other 
products included in the study, whereas LII strains were shown to have originated from a more balanced 
proportion of dairy products versus fish and meats products ( combined). It was shown that dairy products 
have a statistically significant association with greater specimen diversity when compared to the other two 
groups. (Psareva et al. 2021) Furthermore, the essential conclusion of this study was that dairy products 
seem to serve as the main origin of LI strains in this outbreak, which is instrumentally tied to the severity of 
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infections from dairy products since LI strains have been shown to yield greater clinical severity in the past. 
(Muchaamba et al. 2021) This study therefore points us in an important direction when it comes to matching 
sources to strains, since it indirectly proves an association between more severe strains and dairy products. 

To better understand which specific kinds of listeria are found where, several methods have been used to 
group ( or more accurately cluster) them together. A study conducted less than three years ago made use 
of single linkage clustering in the process of backtracking and forward checking the propagation of listeria 
through meat distribution in the case of a particular provider. (Luth et al. 2020) This case's methodology was 
a promising point of inspiration for us , since we wondered whether or not we could employ similar methods 
from a more direct, intrinsic source. The study employed single-linkage clustering to group different listeria 
outbreaks and isolates by genetic makeup through a process called core genome multilocus sequence types 
(cgMLST). (Luth et al. 2020) The empirical rule for assigning clusters was that two isolates would be placed 
together as long as they had less than eleven genetic allele differences in accordance with the dictation of 
cgMLST. While this means that the strains were not directly clustered by isolation source (likely due to the 
fact that the potential sources were limited to either food , food processing, or clinical detection) , the sources 
were readily comparable with the clusters themselves through several visuals provided in the study. Most 
notably, two clusters comprise all of the clinical sources in listed in the data, while the remaining 15 clusters 
have strictly isolates from food or food processing environments. 

These two clusters are both part of a single outbreak that occurred in Germany over the years 2013 to 2018, 
with all of the cluster 2 cases fall ing between 2015 and 2017 and the cluster 1 cases spanning the entire period. 
Cluster 1 had 72 cases in total and cluster 2 had 11 cases in total, resulting in the outbreak consisting of 
83 total cases. The remaining clusters are not discussed at length, which is not empirically helpful , but it 
is mentioned that clusters 9, 10, and 12 through 16 all had an identical medical feature (they all had the 
same virulence factor composition, which consists of genes associated with the outbreak clusters) that tied 
them to the two outbreak clusters. (Luth et al. 2020) In a general sense, a Mann-Whitney U test done by 
the study found that gene counts pertaining to virulence in clusters 1 and 2 differed extremely significantly 
(with a p-value less than 0.0001) from the gene counts pertaining to virulence of all the other clusters. While 
this realization is important, it is somewhat obvious given the background the study provides, and does 
not critically examine the potentially significant association between source and strain severity. (Luth et 
al. 2020) This study made promising progress in sorting the strains of listeria by genetic differences, going 
even further than sorting by serovar, and its use of traditional clustering methods was relatively successful 
and highlighting some trends pertaining to the disease, but it is important to explore other, more general 
methods when studying a disease that had been shown to be multifaceted and intrinsically complicated. 

More complex genetic clustering has also been done on strains of listeria, which has yielded some more 
insight into how useful a newer approach to clustering could be. Whole genome sequencing with SNP clusters 
(similar to what we discuss in the next section) has been used to provide a more detailed, empirical analysis 
of similarities and differences between different strains of listeria. ( Chen et al. 2017) This data focused on 
specific similarities between strains found in either environmental samples or from ice cream, all of which 
were confirmed to have contributed to an outbreak of listeriosis in the United States. This kind of granular 
analysis is critically important to our approach, as it demonstrates the potential success that can surface 
from building multifaceted, similarity-oriented clusters from genetic data. One feature that is lacking in this 
analysis is the incorporation of other information, such as self-same distance or time of isolation ( the latter is 
naturally missing because only one outbreak is considered). Consequently, a generalization of this approach 
to a broader dataset would be of great use to public health officials, since it would allow for a more in depth 
examination of strain similarities. 

It is clear that clustering analysis is a natural approach when examining the behavior of listeria in the 
context of public health. The sources we have referenced above make good progress in this regard , but fail to 
incorporate a broader collection of observations and cannot utilize more dynamic evaluation schemes (like 
those that make use of weighting). We will build upon this research by constructing unweighted k-means 
clusters and weighted network clusters using the information we have available, and then compare our models 
to pre-existing genetic clusters. This will provide a more dynamic picture of listeria's behavior in the context 
of public health and provide the methodological framework for identifying high risk strains (i.e. those with 
serovar 4b) and the sources from which they most commonly originate. 
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Data Exploration 

The data we will be working with is taken from the National Library of Medicine which is operated and 
organized under the auspices of the National Institutes of Health. (NLM:NCBI 2022) The central contributors 
to this database are the CDC, the FDA, the USDA, and PHE (Public Health England). Collected by 
numerous different agencies this database encompasses a wide variety of often profoundly unreliably labeled 
variables, some of which are missing in great quantities as discussed below. This dataset contains an excessive 
array of variables, many of which are either missing in great quantities or not relevant to our study, so we 
will begin by discussing the most important variables first. In terms of the collection of this data, researchers 
submit their results to the NIH for the NLM and report variables that they have for each isolate. As we 
will see, this leads to many different ways of denoting the same feature for a given observation, which makes 
comprehensive analysis extremely difficult. We discuss examples of this below. Several variables (for example, 
serovars) are recorded clinically uses standard biological procedures, whereas other variables are automatically 
observed by the researchers (like location). It is up to the submitter, however, to properly list each variable, 
for even if the information is available, it may not always be recorded. This provides a rough outline of how 
the data in the source was collected and where it came from. 

We begin by explaining each covariate and the percentage of entries missing for that given variable (which 
accompanies each variable name in parentheses). The strain (17%) is given, along with its serovar (81%), the 
organism's group (not missing), the outbreak (not missing, assuming all empty entries are sporadic), the 
location of the isolate (12%), the isolation's source (22%), the date of collection (16%), and two minimum 
distance variables. The distance variables record the minimum distance from a given isolate to an isolate of 
the same strain (27% missing) and an isolate of a different strain (49% missing). In our analysis , we only use 
the self-same distance, because this is the most useful metric in inspecting how an isolate spreads around and 
how far it can spread. We note that these distance variables denote the distance between to isolates in a 
given SNP cluster (an organization of the isolates by genetic information), which is a variable that we do not 
use directly, since its influence is felt through the use of the distances. Furthermore, we also consider the 
number of contigs (genetic components of the isolates, where N50 is a related contig property that represents 
additional genetic information in our case) a given isolate has. 

Naturally, there are many more variables in this dataset that are not of immediate use to us, either due to 
missingness of bureaucratic irrelevance. We will quickly go through these variables and justify their omission 
in our analysis. Which initiative ( or bioproject) is recorded completely, but since any demographic information 
would be better represented through location and time data, we omit it. Software version variables and 
analysis type variables are not of any use to us since they are not tied to the biological properties of listeria or 
its origin. Enzyme pattern variables (93% for primary and 94% for secondary), host disease (87%), phenotype 
and genotype variables (100% for both), computed types (100%), the isolate 's host (78%), stress genotype 
(65%), and IFSAC category (65%) are all missing in such profound percentages that using them as covariates 
would be impractical. Specifically, if we were to try to apply any method to replacing them ( either through 
inverse probability weighting or imputation), we would either be working with an extremely small amount of 
data (in the case of weighting) or we would be engaging in a excessively and wastefully laborious process (in 
the case of imputation). Consequently, we only use completed observations that have all of the necessary 
data, which leaves us with a considerable amount of data anyway. 

Already, it is evident that this data will be challenging to work with and analyze numerically. This is 
obviously due to the fact that so few of the variables we have to work with are numerical, which means direct 
quantitative analysis difficult. This is one of the primary limitations of the dataset that we will have to 
circumvent in our analysis, since visualization and statistical analysis dependent heavily on the numerical 
inputs of a given dataset. Another immediate limitation is the intense missingness of so many variables, as 
previously mentioned and discussed further below. Many of the variables we would like to consider are missing 
in drastic quantities, which render them unusable in most modeling contexts and even in some exploratory 
contexts. As a result, we have to fix our focus on a specific set of key variables that we can explore and 
investigate, in order to get a better sense of any possible modeling avenues that seem fitting or any basic 
trends that are worth observing and addressing when it comes time to implement a model. 
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An immediate adjustment can be made for the sources of listeria, since we technically have two variables to 
work with. In addition to the source type listed above, there is another variable ("isolation type") that has a 
smaller percentage of missing entries (11%), but is far less informative since it only lists entries as either 
environmental or clinical. However, it is better to have some information on the source of isolation than none 
at all , so we can conflate these two variables to improve the missingness of the isolation data. Essentially, if any 
observation in the specific isolation variable is missing, but there is a general observation ( either environmental 
or clinical) , we fill in the empty entry with the general information available. Through this transformation, 
we reduced the missingness on the isolation source variable, which is a significant improvement, and since 
there were some entries in this column that were already vaguely listed as either environmental or clinical to 
begin with, we have not lost a great deal of information by performing this transformation. Now that we 
have shaped, contextualized, and focused this dataset into a structure that is more manageable, we can begin 
to explore the trends concerning distributions that arise naturally among the different covariates. 

The usage of dates throughout this dataset is spurious and quite challenging to work with. Some of the 
entries provide exact days and months, some only months, but most of the dates are either missing or provide 
only the year. However, enough provide yearly information t hat we can analyze the change in our data over 
time to a least some extent. We have divided the data into quarter-years and restrict our analysis to data 
points between the years 2017 and 2022. With this, we can examine the probability densities of our minimum 
distance variable over this period. Figures 1 and 2 below show the densities of the minimum distance to 
another ident ical isolate by each yearly (four-quarter) group from 2017 to 2022. Figures 3 and 4 show the 
densities of the number of contigs grouped into the same yearly divisions. Note that we include outliers in 
our visualizations in order to emphasize the wide range of possible values taken on by t hese isolates (in the 
case of both variables). 
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This information is important to us when we are planning our analysis approach of t his data. We can see 
that the years 2017, 2019, and 2021 all had minimum self-same distances that were more likely to be smaller 
(so that they were closer to identical strains on average) when compared to the other years. These kind of 
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temporal trends are important to make note of, since certain years appear to exhibit a greater tendency for 
strains to be close together when compared with other years . Furthermore, similarities in distance densities 
are also somewhat reflected in the contig densities, though not exactly. Most notably, the contig densities have 
a shape that closely resembles an F distribution, while the distance densities closely resemble an exponential 
distribution. Additional exploration can be done regarding the distributions of our variables when grouped 
by source as well , which provides further insight into the dynamics of the dataset . 
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Again, we see that the distributions of these quantities differ noticeably by source, just as in our investigation 
of yearly effects. Food sources seem to yield isolates that are closest to identical isolates, which makes sense 
in the context of how listeria emerges in food-processing situations. One bad collection of food products will 
arrive in the same place and ultimately effect the same region, which would lead to several identical isolates 
within the same area. Environmental sources also followed this trend, which is justified by the same line 
of reason used in the case of food products. The remaining sources did not seem to keep with this pattern 
as evidenced by their densities , which would lead us to believe that other sources do not yield the same 
centralized effect that these two do. This is an important point that we will address in our clustering analysis. 

Finally, we can examine the baseline proportions of serovar 4b strains in the dataset (before any clustering is 
actually done) . Table 1 below contains the proportions of serovar 4b for each source group so that we can see 
how these proportions relate to the presence of serovar 4b in each of our clusters. As we see, clinical isolates 
lead in terms of serovar 4b prevalence, which makes sense since a great deal of clinical data is (presumably) 
extracted post-mortem (as in many cases of cerebrospinal fluid) . Human cases also demonstrate a prevalence 
that is more prominent than other sources (though much less than clinical isolates. 

Table 1: Serovar 4b Prevalence by Source 

Source Serovar 4b Prevalence (%) 
Human 2.07 
Food 0.56 
Clinical 39.13 
Environmental 0.20 
Misc. 0.00 

Now that we have established some of the essential trends that surface in the dataset, we can detail the 
precise methodology through which we will create our two separate clustering models. Note that we have not 
discussed much about the SNP genetic clusters that exist in our dataset already, since this data will become 
more relevant in the form of a baseline comparison with our newer models. We can use a variety of methods 
to compare these two approaches, ranging from elementary to complicated. Collectively, these comparisons 
will allow us to comment on whether or not (or , more generally, to what degree) we can generalize our 
approaches to non-genetic information when trying to identify isolation sources that elicit the greatest chance 
of harm to human beings. 
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K-Means Methodology, Software, and Diagnostics 

Our analysis is conducted in the R programming environment. (R Core Team 2018) Our clustering analysis 
will be carried out using the MASS (Venables and Ripley 2002) and cluster (Maechler et al. 2021) packages, 
with supplemental diagnostics from the factoextra (Kassambara and Mundt 2020) and cl Valid (Brock et al. 
2008) packages. Visualizations of clusters include color-coded scatter plots to examine cluster wide behavior 
in view of continuous numerical variables , which allows us to qualitatively assess the behavior of different 
variables within different clusters. In terms of the technical mechanisms behind our chosen methodology, we 
will employ the conventional k-means clustering method using contig, N50, minimum distance, year, and 
numerically indexed source data. To this end, we introduce the following formalisms in our explanation. Let 
X = {Xm}~=l be our set of n numerical observation vectors (each having components for each variable listed 
above) and let ~ = {:Ej }j=1 be a set of clusters that exhaustively divide X for some k :S n . For each set I:j 
let µj be the mean of all points contained therein. Then the k-means algorithm finds the set of clusters ~ • 
that satisfies: 

where 11 · 11 2 denotes the L 2 norm whose square (11 · II~) is the sum of squared components for any given vector 
input. The implementation of this method corresponds to the cluster and MASS packages in R. Naturally, a 
point of concern that must be addressed is the number of optimal clusters to be used in our analysis. The 
process of choosing this value overlaps with our discussion of diagnostics below. 

The factoextra and cl Valid packages provide numerous diagnostic methods that not only allow us to assess 
the performance of our model in selecting ~* , but also allow us to choose the optimal number of clusters to 
create. The primary method of examining our model's performance and choosing the optimal number of 
clusters will be the silhouette coefficient. For some Xm E :Em, we define the following: 

{ 

,B (X,,, )-a(X,,, ) 
f(Xm) = ;ax{a(X,,, ) ,,B(X,,, )} 

For any given observation vector, the silhouette coefficient (~(Xm)) falls between -1 and 1, with 1 indicating 
the strongest , well-matched cluster placement for t hat observation, 0 indicating an indifferent placement of 
the observation, and -1 indicating the strongest poorly-matched cluster placement for the observation. Part 
of our visuals will be plots of the average silhouette coefficients across all observations for different numbers 
of chosen clusters. Relevant software is included in the factoextra and cl Valid packages, specifically in 
terms of generating t he previously mentioned plots , which are more economic in terms of defending our 
chosen cluster count when compared to comput ing silhouette coefficients manually. Our main method of 
comparing clusters created by different methods will be to compute Rand index scores using the fossil 
package (Vavrek 2011), which we discuss later. This will allow us to measure similarity across different 
modeling approaches, which is helpful for aggregate comparisons. Specifically, such aggregate comparisons 
will allows us to determine the degree of redundancy in either of our models. If either our k-means approach 
or network approach are identical to t he SNP cluster model, then there would be no need to create t hem, 
since they require additional computational exertion and contribute very little additional information. 
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Network Clustering Methodology, Software, and Diagnostics 

The network clustering approach that we employ is exceedingly complex and nuanced, making use of aspects 
from graph theory to machine learning. We have accordingly tried to condense our theoretical explanation 
of the methodological underpinnings of this approach. In short, we follow the methods outlined in the 
assembly of the linkcomm package in R. (Kalinka and Tomancak 2011) This approach allows for the creation 
of cluster-like "communities" that are more flexible in terms of their membership features. Membership to a 
given community is not binary, as it is in the k-means approach, but rather a string of proportions ( or more 
stochastically probabilities) that indicated the degree to which a given node belongs to a given community. 
In an illustrative example, a network may consist of three points that are grouped into two communities. 
Point 1 could belong entirely to community 1, point 3 could belong entirely to community 2, and point 2 
could hold 50% membership in community 1 and 50% membership in community 2. The main benefit that 
this approach offers is this generalization of cluster membership, which allows for overlapping trends ( either 
because of similar timing, sources, or distance) to be better processed in the grouping of data points. 

At the core of this network-style comparison of similarities is a set of weights that we assign to the data we 
have. Firstly, we note that there are 2290 unique strains that we are considering, which means that there are 
22~

02 = 2622050 nontrivial strain combinations to consider. This presents issues in itself, which we address 
later, but for now, we can outline the weights we apply to these combinations. To this end, we define the 
function 

[x]ry = x rounded to the nearest order of magnitude T/ 

(so if x = 48946, [xh = 49000, but [xh = 48950). Also, note that when we discuss an observation Xm , we 
actually mean to write: 

Xm = (N50m , Contigm, Sourcem, Distancem, Quarterm)

Hence, for each nontrivial observation pair (Xm , Xr ), we define the subweights: 

W(l) = 3 
{ 

0 .4 

m,r O 

w(4) = T 
{ 

0.4 

m,r O 
[Distancemh = [Distancer h 

[Distancemh -/- [Distancer h 
w(5) = {0.3 

m,r O 

Sourcem = Sourcer 

Sourcem -/- Sourcer 

Quarter m = Quarter r 

Quarter m -/- Quarter r 

From these subweights, we define the weights for the interaction between observation Xm and observation Xr: 

5 

0 ::; Wm ,r = L, W~'.r ::; 1. 
q=l 

In terms of our network ( a graph with each node representing a specific strain of listeria and each edge 
between two nodes representing an interaction of similarity), these are the weights we assign to each edge. 
We do not consider the directions of such edges (meaning that the connection between strain A and strain B 
is taken to be the same as the connection between strain B and strain A). With these weights, we pair each 
interaction (Xm , Xr) = (Xr,Xm) with the weight Wm ,r, after which we can construct the network itself. 

As mentioned, the entire construction process is intensely involved, but the fundamental metrics off which 
the approach is based are essential in a methodological discussion. In the case of weighted nodes (as in our 
case), it is important to address the method by which node-sharing links are declared "similar" and to what 
extent, since this is the foundation of the network approach. Adapting the notation from the documentation 
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listed in the linkcomm package (Kalinka and Tomancak 2011), let am be the vector of all weights concerning 
immediate interactions with strain (node) m. Let Em ,q and Er ,q be two strain interactions (links) that share 
the common node q. This approach makes uses of Tanimoto's distance metric, defined as: 

where (-, •) denotes the conventional vector inner product defined by: 

t t 

(v,u) = L VsUs, \/v,u E !Rt 3 (v,v) = llvll~ = L v;. 
s=l s=l 

This metric is used to inform the distances created in our network model across all possible strain combinations. 

In terms of intra-model diagnostics, there are two quantities of interest that we can examine in after the 
creation of our model, which we can define using an adapted version of the notation introduced in the 
linkcomm documentation. (Kalinka and Tomancak 2011) Firstly, we consider the community centrality, a 
measure that incorporates the Jaccard coefficient and will give us an idea of how well our network separates 
the data. First, we note that the Jaccard coefficient is given by: 

where C1 and C2 are communities (hereafter clusters) that have been created in our model. (Note the 
structural similarity to Tanimoto's distance metric). Let M be the set of clusters to which node m belongs, 
and let MR= {m ER I R c M} and MR,S = {m E (Rn S) I (Rn S) c M}. From this, we define the 
community centrality of strain (node) mas: 

( 1 - IM~ sl L :J(R, s)) . 
' mEMR,S 

This measure gives us a sense of the overlap, individuality, and centrality of the connections established 
for a given node m, which can be helpful when evaluating practicality and functionality in applied settings. 
Additionally, we can define node modularity for a cluster C, which is given by: 

£ + ( C) 2<5 
M(C) = £-(c) · 1c1 - 1 

where £+ ( C) is the number of interactions in cluster C alone, £-( C) is the number of interactions not in 
cluster C, and c5 is the average degree (number of interactions for a given strain) across all strains in the 
network. This measure allows us to inspect the degree of separation for a given cluster, which will aid in 
determining how cohesive the distinctions we have made truly are, and subsequently, whether or not t hey 
were worth making at all. 

These two metrics each serve a similar purpose, but on a different scale, which is why it is essential that we 
include both in our analysis. Centrality is evaluated at the strain level, which means that it is a reflection of 
separation and connection for given strains of listeria in the context of other isolates. Consequently, this 
measure possesses a great deal of clinical value, since it is an effective way of examining which strains are 
most related and which are most different. On the other hand, modularity evaluates differences at the cluster 
level, which while useful for analytical purposes, restricts investigations of difference to an aggregate level. 
The goal of creating this clusters is to establish a model in which one can freely move from levels of generality 
(strain to cluster to dataset, and vice-versa), so modularity is included primarily to compare the broad degree 
of separation in a network and how this compares to other models. 
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Dimensionality Issues and Sampling Methods 

Traditional k-means methodology is easily applied (in the computational sense) to a dataset of the size we 
are working with. To t his end, no further methodological action is needed. However , network clust ering is 
a far more intensive procedure as we have a previously mentioned. Though our refined dat aset only has 
2290 distinct observations (st rains) , this directly requires us to evaluat e a total of 2622050 nontrivial strain 
interactions. Initial attempts at this (from a purely analytical perspective) proved impossible, since it took 
in excess of 30 minutes t o make basically trivia l computational progress. Additionally, it is impossible to 
render any kind of useful network visualization wit h over 500 strains due to practical font sizing issues and 
shading limitations. To resolve these problems, we introduce an elementary sampling approach for the partial 
creation and evaluation of our network clustering model. First , we randomly sample 1000 observations from 
the original dat aset of 2290 observations when performing network clust ering analysis. This allows us to 
create a recompiled network interact ion dat aset with 999000 entries. From here, we apply the following 
sampling schemes. 

Visualization Sampling 

Our approach to visualization is fairly st raightforward. Since the highest number of st rain combinations that 
can be easily visualized using a Fruchterman-Reingold (FR) graph (Fruchterman and Reingold 1991) is 500, 
the algorithm for which is the mathematical underpinnings that assemble our clusters as well. While the 
details behind this process are beyond t he scope of this paper , the visuals are essent ially large groups of 
connected nodes accompanied by small pie charts indicating cluster membership percentages. It is essential 
t hat we preserve the readability and presence of these small pie charts, since they allow for quick, qualitative 
assessments of st rain-to-st rain dynamics to be made. However , this is not possible for the entire set of 
possible strain pairings. Therefore, we adopt the following partial analysis sampling scheme to creat e two 
sub-visualizations of t he data: 

[1] Draw 500 randomly sampled st rains from t he dataset and cluster t hem int o an FR graph. 

[2] If t he algorithm is successful , draw anot her 500 randomly sampled strains without replacement. 

If not, repeat step 1. 

[3] Cluster the second sample into an FR graph. If t he algorithm is successful , stop. 

If not , repeat st eps 2 and 3. 

We note that the FR graph algorithm may not always converge due to overt difference within a "bad" sample. 
Hence, we simply repeat the process until this works by t esting different random seeds (see below) . The 
outcome here is two FR graphs showing the interactions between 500 randomly selected st rains (for a total of 
1000 interactions). This is only a small number of t he possible interactions , and our analysis is certainly 
limited , but at least these visuals will allow us to make some general remarks about the behavior of these 
st rains of listeria. 

Analytic and Diagnostic Sampling 

If we do not need to render a visualization of the networks we create, t hen we have a greater degree of flexibility 
regarding t he number of strains we can computationally handle in a subnetwork. Init ial t rial-and-error 
implementations showed that samples of up to 1000 strains are plausible if only diagnostic and analytic 
computations are needed . Therefore, we can still implement FR network clust ering as we did before, but 
now with 1000 randomly sampled strains, which allows from a greater deal of possible interactions and more 
comprehensive metrics. The only ot her method that was first considered plausible is t o set edge limits on 
visualizations, but not only did this prove incredibly limiting, it also yielded lit tle to no improvement due to 
the immensity of our graph and the nuance of our weight ing syst em. The only drawback to our sampling 
approach is the amount of time and trial-and-error required to find a convergent seed across a sufficient 
number of sub-networks, an issue that we will discuss in great er detail later on. Hence, we implemented the 
following similar analytic sampling scheme: 

10 



[1] Draw 1000 randomly sampled strains from the dataset and cluster them into an FR graph. 

[2] If the algorithm is successful, draw another 1000 randomly sampled strains without replacement. 

If not , repeat step 1. 

[3] Cluster the second sample into an FR graph. If the algorithm is successful, continue. 

If not, repeat steps 2 and 3. 

[4] Repeat steps 1, 2, and 3 until five FR graphs have been successfully constructed 

( without replacing previous samples). 

This will allows us to get an idea of the broader behavior between strains in the dataset, in that we can 
compute diagnostics and appropriate metrics for each subnetwork and compare them. Additionally, we it 
comes to computing specific centrality values, we will simply select 10 random strains from a given network 
and compare the values overall, with aggregate measures also included. Finally, we list the seeds we used in 
drawing these samples below in table 2. 

Table 2: Seeds Used for Sampling 

Action Seed 
Drawing 1000 Observations From the Original Dataset 3 
Constructing Visual Networks With 500 Interactions 18 
Constructing Analytic Networks With 1000 Interactions 7 

Inter-Methodological Comparative Diagnostics 

Finally, we can compare the performance of our k-means model, network model, and the original SNP model 
provided in the dataset. Our main method of comparing similarity will be the Rand index, which we define 
through some additional notation. Let M denote our k-means model, N denote our network model, and 
let§ denote the pre-existing SNP model. Let 0(6± , □±) denote the set of observations within the same 
(+)/different (-) cluster in model 6 and also within the same (+)/different (-) cluster in model □ ( for example, 
0(M+, N-) denotes the set of observations that are in the same cluster in the k-means model (M) , but in 
different clusters in the network model (N)). Then the Rand index for two models, 6 and □ is given by: 

0(6 +, o+) + 0(6 - , □-) 
R(6 , □) = 0(6+, o+) + 0(6-, □-) + 0(6+, □-) + 0(6- , o+) 

Naturally, we will compute R(M, N), R(M, §), and R(N, §), which will allow us to gauge the similarity of 
our models with each other and with the pre-existing model. High levels of similarity between either of 
our two models and the SNP models would be important and promising for clinical applications, since this 
would essentially suggest that the basic SNP genetic clustering method provides as much nuance as more 
multifaceted approaches like k-means and network clustering. This would also allow us to assess redundancy 
in our approach, which is important given the computationally expensive nature of our models. 

Finally, some elementary summary statistics are of great importance to us despite their simplicity. For each 
cluster in our k-means approach, we compute the proportion of strains with serovar 4b, which gives us an idea 
of relative severity between such clusters. Additionally, we examine the dominant sources for each k-means 
cluster, so that we can determine bivariate trends in regards to severity and source. In our network clustering 
model, we can also compute these values for each of the five 1000 sample networks. These values may become 
t iresome to compute and list (as in the case of the SNP clusters), so it is more instructive to compute serovar 
4b prevalence values at the network level in order to get a rough idea of the severity dynamics. 
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Results 

We begin by assessing the results from our k-means model. From our initial investigations of silhouette 
coefficients for 1000 sample draws, the optimal number of clusters fell consistently within the range of 3 to 9, 
averaging around 6 (as in the case with a seed of 3, which is what was used to create figure 7) . As such, we 
created 6 k-means clusters as shown below. 
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Table 3: Serovar 4b Prevalence by Cluster 
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Cluster Dominant Sources (Source Total/Cluster Total) Serovar 4b Prevalence (%) 
1 Human (232/604) , Food (372/604) 2.32 
2 Human (128/251) , Food (102/251) 1.05 
3 Human (115/833, Food (709/833) 1.20 
4 Environmental (229/269), Misc. (34/ 269) 0.00 
5 Food (62/95) , Environmental (22/95) 0.74 
6 Environmental (232/238) , Misc. (6/238) 0.84 

As we can see, clear trends between variables and clusters exist, specifically in regard to figures 2, 3, and 
4. Clusters 2 and 6 consistently show lower minimum self-same distances and contig counts, yet seem to 
oppose each other in terms of N50 values, with cluster 2 exhibiting much higher N50 values and cluster 6 
exhibiting much lower N50 values. Serovar 4b prevalences differ noticeably across the six clusters, but not in 
a way that shows a consist trend in terms of our numerical variables (for example, clusters 4 and 1 both 
consist of observations from closely positioned quarters , yet opposingly show that lowest and highest serovar 
4b prevalence, respectively). To better corroborate these results, we turn to the outcomes of our network 
clustering model, which allows for more elaborate interactions. 
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The two FR graphs we obtained from our sampling analysis are presented below in figures 5 and 6. We note 
that the number of nontrivial interactions (as shown in the graphs themselves) differ vastly between the two 
models. 

Figure 11: First 500-Observation Network (Trivial Links Omitted) 

Figure 12: Second 500-Observation Network (Trivial Links Omitted) 
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These network diagrams clearly showcase the different possibilities concerning network interactions in this 
dataset. Sometimes, interactions are so limited due to dissimilarity in the data that only small, distinct 
communities can be established, as in figure 6. In other parts of the dataset , more elaborate (but still fair ly 
separated) networks can be created, with some inter-cluster interaction as in figure 5. This gives us an 
interesting second viewpoint of our data: while the k-means visualizations showcase intense mixing between 
clusters in regards to certain variables, these visualizations evidently depict strong separation, which is likely 
due to the strict weighting scheme we have implemented (which emphasizes timing (quarter) and source). 
Nonetheless, a clearer analytical picture can be obtained from considering the aggregate diagnostics we 
have assembled using our five 1000 observation sample network, which include a wider variety of possible 
interactions. Given that several interactions have weights of 0 (meaning they would not be shown on a 
visualization like those above) , aggregate analytics (mean modularity and mean centrality) will incorporate 
this effect in a quantitative manner that cannot be achieved qualitatively through the graphs. 
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As we see in table 4, our networks also reflected the variability of this dataset . Mean centralities for networks 
1, 3, and 5 were all comparable, and also had similar standard deviations, though network 5 had relatively 
more variance than the other two. Network 4 was the most interesting of our sample, since its behavior 
was the most nonspecific. On one hand, it had a similar number of interactions to networks 1, 3, and 5 
(they are not depicted for plausibility) , but it was not as sparse as network 2, which possesses incredibly low 
centrality compared to the other networks. Furthermore, we note that centrality is a node-level metric that 
is evaluated for each strain, which is important to consider in the context of the remaining data. On the 
other hand, the modularity presented here behaviors opposite in this case. Networks 1, 3, and 5 possess 
values of magnitude 104, while network 4 possesses a value of magnitude 103 (though network 3 is fair ly close 
to being in the same magnitude bracket as the others). Network 2 is again the outlier , with shockingly low 
modularity, again in line with its previous metrics. Notably, network 3 exhibits much higher relative variance 
to the other networks , and is the only network whose standard deviation of modularity exceeds its mean. 

Table 4: Aggregate Network-Level Results 

Network Mean Centrality SD Centrality Mean Modularity SD Modularity N.S.4b.P. (%) 
1 1.04 0.76 3.858688e+04 l.297916e+05 1.38 
2 0.01 0.09 5.559012e-01 1. 928324e-0 1 0.00 
3 1.03 0.77 1. 782799e+04 9. 089949e+04 1.27 
4 0.51 0.78 5 .104336e+03 4.841547e+04 0.60 
5 1.10 0.87 2.347899e+04 l.032028e+05 0.71 

(Note above that N.S.4b.P. is network-wide serovar 4b prevalence). Finally, we wish to compare our 
two clustering models with the original SNP cluster model as provided in the dataset. When it comes to 
comparing our k-means model with the original SNP clustering model, we can easily compute the Rand 
index on the entire dataset: this value was approximately 0. 7 42, indicating decent similarity between the two 
approaches, as we will discuss later. To make any kind of comparison with our 1000-observation networks , 
we can compute the Rand index for each network and the corresponding k-means and SNP clusters for the 
strains from the original dataset. To this end, we obtain 10 distinct Rand indices (5 for each other model) , 
which are summarized in table 5 below. 

Table 5: Rand Indices for All Network Model Combinations 

Network K Means Rand Index SNP Rand Index 
1 0.727 0.911 
2 0.905 0.571 
3 0.712 0.892 
4 0.678 0.929 
5 0.740 0.926 

Evidently, there are varying levels of disagreement across our models and the original SNP model presented in 
the dataset . For the most part , the network clustering methods agrees quite strongly with the SNP clustering 
model, with the exception of network 2, which only agrees with the SNP model for a little over half the t ime. 
The results are interestingly reversed when we consider the Rand indices for the comparison between the 
networks and the k-means model. All of the models exhibit decent levels of agreement with the networks , 
placing observations similarly for about 70 percent of the time. However, network 2 demonstrates a much 
higher level of agreement with the k-means model than any other network , the opposite of the response to 
the SNP model. This is especially strange since network 2 was by far the smallest network of the five, which 
could perhaps be an indication of the tendency of k-means clustering to mix clusters (as shown in figures 2, 
3, and 4) due to strict membership criteria when compared to the network approach. Small networks (like 
the one shown in figure 6) exhibit a similar strict community formation tendency, which could be why this 
approach has a high Rand index value when compared with the k-means model. 
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Discussion, Limitations, and Conclusion 

It is clear from all of the models discussed herein that source and timing play important parts in contributing 
to the severity of any manifestation of listeria, at least when one uses serovar 4b prevalence as the dominant 
metric of severity. Serovar 4b prevalence differs noticeably across the five 1000-observation networks we have 
created for analysis, just is it differs considerably across the k-means clusters. Of course, our analysis of the 
networks is inherently limited by the sheer immensity of the structures: the entire network is implausible 
to construct as we discuss below, and even the 1000 interaction graphs can be challenging to deconstruct. 
However, we can see that different portions of the data exhibit greater degrees of severity, and small-scale 
analysis can be done on clusters extracted from our visualizations of the networks in figure 6. For example, 
the cluster consisting of strains 1590374, 1242925, 389746, and 850087 has no strains with serovar 4b and 
consists entirely of isolates originating from human sources. By comparison, the cluster consisting of strains 
559829, 535307, 780992, and 1280343 also has no strains with serovar 4b, but draws 75% of its sources from 
human origins and 25% from environmental origins. These kinds of detailed, small scale analyses could be 
useful when dealing with condensed datasets, since they provide important source-severity associations that 
elucidate the behavior of listeria. However, conducting many of these kinds of dissections is tedious; it would 
be inefficient to go through all the clusters in figure 5 for example, let alone a 1000 observation network. 

In terms of addressing our first goal, it is clear that variables beyond genetic information alone factor into 
the severity of listeria, most notably the source from which an isolate originated and the timing of when that 
isolate we obtained. Our k-means model shows a great degree of separation of clusters in view of certain 
variables; for example, the bivariate behavior concerning timing and minimum self-same distance (as depicted 
in figure 3) shows similar behavior for clusters 2 and 6, despite the fact that these two variables differ in terms 
of their N50 and contig values (which are two of the only pieces of genetic information available). Moreover, 
table 3 does confirm the pre-existing trends established in the literature review in that human and food 
sources do seem to present high serovar 4b prevalence when compared to other sources. However, serovar 4b 
is also present in environmental and miscellaneous sources, which is why additional numerical information 
is essentia l in determining associations between serovar 4b prevalence and sources. This concept ext ends 
to our network models as well, since the relatively high mean modularities ( except in the case of network 
2) would suggest t hat a great degree of disconnectedness exists between clusters in each of the four other 
networks. As such , this means that our weights (which give priority to isolates from the same source and 
quarter) sufficiently divide the clusters into a non-overlapping partition ( as shown in figures 5 and 6, which 
most pie-charts are solid color, implying exclusive membership to a single group). Hence, we can deduce 
that numerical factors beyond genetic information alone play an important part in distinguishing isolates, 
which subsequently lends itself to evaluating problematic sources and other non-genetic factors. In terms of 
our second goal, we see that our network approach was very similar by t he Rand index to the SNP model 
(with the exception of network 2) and it was fairly (though much less) similar to the k-means model as well 
(except network 2 which was very similar. This means that while the SNP approach may be reminiscent of 
the network approach, it is decently different from the k-means approach. 

Our approaches have numerous limitations that should be addressed in future endeavors. First, the dataset is 
sparse and most of the data is non-numerical. This makes any form of analysis excruciating and inherently 
limited, so it is advisable to seek out more reliable data for other projects. Second, we were unable to 
use all of the remaining data to construct a full network analysis due to dimensionality issues. While our 
sampling approach offered a rough idea of our ideal result, it seems that this form of network clustering 
is ill-suited to this kind and size of data, and should only be applied to small , complete datasets. Third, 
our time scale (quarters) was not as granular as it should be; a more continuous time scale would be better 
for a clustering analysis. Fourth, our source groups were broad and vague; a more detailed analysis should 
focus on one of our groups (perhaps food alone for example) and divide that group into detailed sub-sources 
( e.g. dairy, plant-products, meat, etc.). Finally, different weighting schemes should be tested for additional 
network models, since ours is one of many possible setups. This would better explore the effects of the 
variables on interactions. Nonetheless, our models have shown that sources and both genetic and non-genetic 
information play a role in strain severity (serovar 4b prevalence), and we have also assessed their similarity 
with pre-existing genetic clustering models, while providing statistical framework that could be useful in 
examining and potentially preventing listeria-oriented food-borne illness. 
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